If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-12z+30=0
a = 1; b = -12; c = +30;
Δ = b2-4ac
Δ = -122-4·1·30
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{6}}{2*1}=\frac{12-2\sqrt{6}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{6}}{2*1}=\frac{12+2\sqrt{6}}{2} $
| 7y-32=6y+18 | | 5x²+8x-13=0 | | 1/2(16x-4)=6x+10 | | -6p-13p+20p=5 | | 5=-7/9+x | | 0.05n+0.10(n+9)+0.25((n+9)+21)=10 | | x+(×+16)=77 | | -10+j-10=-2j+10 | | x+(×+16-4)=77 | | x+(×+16)+(×-4)=77 | | 7p-5=3+7p | | 7x | | D+11d-d—20=-13 | | 3x^2+26x-8=0 | | 7x+8=29- | | 6+2q+1=11q+3-9q | | 2/5(4c-2)=c+1 | | 8z+4=12 | | 3(60-x)=120 | | 8(w-2)=7(3w+2 | | 1.50x+15x=2700 | | (x-6)+7x=90 | | 24x^2+8x-80=0 | | 15d+-12d+-8d+6d=16 | | 5+0.65x=10+0.45 | | (x+84)+2x=180 | | 4x+6=-6x+-54 | | 2(9x+4)=-24(x-4) | | 2(9x+4=-24(x-4) | | 2x+10=-18 | | 7m+19=-2m+55 | | 5f+9=19 |